A Neuro-Inspired Computational Framework for AGI:
Predictive Coding, Active Inference, and Free Energy
Minimisation
Alexander D. Shaw! and Lioba C.S. Berndt!

Department of Psychology, University of Exeter, Exeter, UK

July 1, 2025

Abstract

This paper proposes that foundational principles from theoretical neuroscience -
predictive coding, the Free Energy Principle (FEP), and variational inference - offer
a biologically grounded framework for artificial general intelligence (AGI). These ap-
proaches characterise the brain as a hierarchical inference system that continuously
updates beliefs and selects actions to minimise uncertainty and surprise. In contrast
to conventional Al systems, which typically rely on static architectures and offline
training, biological agents engage in active, generative inference within dynamic,
uncertain environments. We argue that it is this inference-based architecture-not
just its behavioural outputs-that underpins the adaptability, generalisation, and
resilience of natural intelligence. We outline a neuro-inspired computational frame-
work built on hierarchical generative models, scalable variational inference (e.g.,
Variational Laplace), and Active Inference. Finally, we contrast this approach with
dominant deep learning paradigms and discuss its implications for building inter-
pretable, adaptive, and autonomous machine intelligence.

1 Introduction

The human brain remains the only known system capable of general intelligence (GI)
- the ability to flexibly interpret, model, and act within dynamic, uncertain, and novel
environments. While formal definitions vary, GI is typically characterised by context-
sensitive reasoning, adaptive learning, and goal-directed action across multiple domains
[T, 2]. A growing body of work in theoretical neuroscience suggests that the key to this
flexibility lies not in memorised patterns or fixed rules, but in the brain’s capacity for
inference.

Specifically, theories such as predictive coding [3, 4] and the Free Energy Principle
(FEP) [5, 6] propose that perception, action, and learning arise from the hierarchical
minimisation of prediction error via approximate Bayesian inference. In this view, the
brain is a generative model: it continuously predicts sensory inputs, updates internal
beliefs in response to mismatches, and selects actions that minimise expected future
surprise.



This predictive loop supports both epistemic behaviour (reducing uncertainty through
exploration) and instrumental behaviour (pursuing preferred outcomes), achieved by in-
ternally simulating possible futures and evaluating them according to expected free energy
[7, 8]. The underlying dynamics are governed by a wariational principle, in which the
brain minimises a quantity called variational free energy - a bound on model evidence-
providing a unifying explanation for learning, adaptation, and action selection under
uncertainty. Formally, variational free energy is defined as:

F(q,p) = KL[g(2)|lp(z|z)] — log p(z), (1)

where ¢(z) is the approximate posterior, p(z|x) the true posterior, and p(x) the model
evidence. Minimising this bound approximates Bayesian inference in a tractable way.

Meanwhile, artificial intelligence (AI) has made rapid progress in areas such as transformer-
based large language models (LLMs), diffusion-based generative models, and reinforcement
learning agents [9, [10, 11]. Despite these breakthroughs, modern AI systems often strug-
gle to generalise beyond their training distribution, adapt online, or robustly handle
uncertainty [12], [I3]. They typically lack explicit generative models of the environment
and rely on static architectures trained via supervised or reinforcement learning.

This paper explores the emerging hypothesis that the computational principles un-
derlying brain function - predictive coding, dynamical systems modelling, and active in-
ference - may provide a biologically grounded blueprint for constructing general-purpose
agents. We argue that such agents should not merely reproduce intelligent behaviour,
but embody the same self-organising, inference-based principles that underlie human
cognition.

To develop this argument, we proceed as follows. First, we examine the brain as an
inference engine, showing how hierarchical predictive coding and active inference give rise
to perception, action, and learning. Next, we contrast this with prevailing Al paradigms-
particularly transformer and diffusion-based models-highlighting their strengths and lim-
itations. We then present the Free Energy Principle and inference methods such as Vari-
ational Laplace as scalable engines for neuro-inspired Al. Finally, we propose a roadmap
for AGI grounded in the computational architecture of the brain.

2 The Brain as a Model of General Intelligence

Biological intelligence arises not from memorised rules or static mappings, but from the
brain’s ability to infer latent causes, predict sensory consequences, and adapt behaviour
accordingly. Predictive coding offers a compelling computational account of how this is
achieved [3 4]. Tt posits that the brain maintains hierarchical generative models that con-
tinuously predict incoming sensory input and minimise the mismatch between predicted
and observed signals.

This approach views perception, cognition, and action as outcomes of approximate
Bayesian inference embedded in a dynamical system [14 [I5]. The brain does not merely
react to the world - it models it, anticipates it, and selects actions that reduce uncertainty
about it.



2.1 Hierarchical Generative Models and Approximate Bayesian
Inference

The brain is organised into a hierarchical architecture-spanning both anatomical and
functional levels-in which each level generates predictions about the activity of the level
below. Sensory signals are explained away by these top-down predictions, and only
residual errors-i.e., the unexpected components of sensory input-are propagated upward.
This message-passing architecture supports approximate Bayesian inference over latent
variables z, given sensory observations x, under a joint generative model [5]:

p(x,2) = p(x|2z)p(z) (2)
Because exact Bayesian inference is intractable in realistic settings, the brain is as-

sumed to represent a variational posterior ¢(z) that approximates the true posterior
p(z|x). Inference then proceeds by minimising a variational free energy functional [16]:

Fla] = KLg(z)|lp(2)] — Eq@z[log p(x|2)] (3)

Minimising free energy ensures that internal beliefs are both accurate (i.e., maximise
the likelihood of observed input) and parsimonious (i.e., remain close to prior expecta-
tions). This provides a principled trade-off between flexibility and generalisation, which
is essential for adaptive intelligence [5] [6].

Neurobiologically, predictive coding is thought to be implemented within canoni-
cal cortical microcircuits, which exhibit a consistent layered (laminar) and column-like
(columnar) structure across sensory, associative, and motor areas of the cortex [I7, [I§].
This architecture supports the bidirectional flow of information central to predictive cod-
ing.

In these circuits, pyramidal neurons in the superficial layers (layers 2 and 3) are
believed to encode prediction errors-signals reflecting mismatches between expected and
actual sensory input. These neurons send forward projections to higher cortical areas,
primarily targeting layer 4 of downstream regions [17].

By contrast, deep-layer pyramidal neurons (layers 5 and 6) are thought to encode
top-down predictions. They project back to lower hierarchical levels, targeting both
superficial layers and layer 4 interneurons, thereby modulating the gain of ascending
prediction errors.

Interlaminar inhibitory interneurons-such as somatostatin-positive (SST) and par-
valbumin -positive (PV) cells-further refine this process by regulating the precision, or
weighting, of prediction errors through modulatory control of excitatory neurons [19] 20].

This laminar organisation supports recursive message passing across hierarchical lev-
els: prediction errors ascend to update beliefs, while predictions descend to explain away
sensory input. The anatomical segregation of error and state representations across layers
enables dynamic inference over multiple timescales and levels of abstraction-from basic
sensation to higher-order cognition. Crucially, this architecture also provides a neurobi-
ological substrate for attention, precision modulation, and context-sensitive gain control
within predictive coding frameworks [21, 20].

2.2 Predictive Coding for Perception

In the predictive coding account of perception, the brain is cast as a generative system
that infers the hidden causes of its sensory inputs [3, [4]. Each level of the cortical
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hierarchy encodes beliefs about latent variables in the level below, generating top-down
predictions that are compared to incoming signals. When predictions fail to fully explain
the input, the residuals-known as prediction errors-are propagated upward [I5]. These
errors update the internal model, refining beliefs about the underlying causes. This
iterative, bidirectional message passing implements approximate Bayesian inference in
real time [6].

Let s denote sensory observations and z the latent causes. A generative model
p(s,2) = p(s|z)p(z) defines the likelihood and prior over hidden states. Because exact
inference of the posterior p(z|s) is generally intractable, the brain maintains a variational
approximation ¢(z), which is updated to minimise prediction error. The prediction error
can be written as:

e=s—5(z) (4)

where §(z) is the predicted sensory input based on current estimates of z. Assuming
Gaussian distributions, free energy minimisation leads to a gradient descent update of
the latent causes [21]:

dz  Os
R e
dt x 0z c (5)

Here, ¥ denotes the precision (inverse variance) of the prediction error. Precision
determines the influence of prediction errors on belief updating, effectively weighting the
reliability of incoming sensory data [§].

At the neural level, these hierarchical generative models are thought to be imple-
mented via canonical cortical microcircuits, in which distinct neuronal populations sup-
port bidirectional message passing and precision modulation [17, [19].

Example: Predictive Coding in Visual Perception

Consider a simple visual scene in which a person views a cup on a table. Higher-
level visual areas (e.g., inferotemporal cortex) generate abstract predictions such
as “object with a handle” or “familiar graspable shape” [22]. These predictions are
sent down the hierarchy, shaping expectations for the patterns of activity in lower-
level areas (e.g., orientation edges in V1). If the incoming sensory input matches
these expectations, prediction error remains low. However, if the object is partially
occluded or appears unusual-say, a broken cup or an unexpected angle-prediction
errors arise in early visual areas and are sent upward. These errors are crucial:
they signal a mismatch and prompt higher-level areas to update their beliefs until
the model settles on the most likely explanation (e.g., “damaged cup”).

In this way, perception operates not as passive registration, but as the brain’s
best guess about the hidden causes of ambiguous, noisy input, allowing for rapid
adaptation to new or unexpected situations.

2.3 Action as Inference: Active Inference

Notably, predictive coding is not restricted to perception. In the framework of Active
Inference, action selection is cast as an inferential process driven by the same imperative
that governs perception: the minimisation of expected free energy [23]. In this view,



agents do not passively infer the causes of their observations-they actively select policies
that make future observations more predictable and less surprising.

The expected free energy G(7) under a policy 7 can be decomposed into epistemic
and instrumental components, capturing both uncertainty reduction (exploration) and
goal-directed behaviour (exploitation). One common formulation expresses this as:

G(7) = Eq(xzlm) [log q(z|m) — log p(z|x, )] (6)

This form reflects the expected divergence between posterior and likelihood-minimising
it encourages the agent to seek actions that simultaneously reduce uncertainty about hid-
den states and achieve preferred outcomes [24 25]. In effect, perception and action are
unified under a single inferential scheme: the brain continually infers not only what is
happening, but what it should do to bring about desirable and predictable states of
affairs.

Unlike traditional reinforcement learning, which relies on externally defined reward
signals and policy optimisation, Active Inference derives behaviour from an internal gen-
erative model and an imperative to minimise variational free energy. In this framework,
goals and preferences are encoded as prior beliefs about preferred states, and behaviour
emerges from the drive to realise these states while reducing uncertainty. This makes Ac-
tive Inference naturally suited to continual, adaptive control in uncertain environments,
offering a biologically grounded alternative to model-free or value-based methods [26].

Decomposing Expected Free Energy

Under Active Inference, agents select actions that minimise the expected free en-
ergy G(m), which captures both uncertainty reduction (epistemic value) and goal
fulfilment (instrumental value). A common decomposition is:

G(m) = ~Eygum [Di (@, 7) | a@m)] + By [~ logp(x)]
Epistemic value (uI‘lgertainty reduction) Instrumental value (;rreference satisfaction)
Interpretation:

e The first term encourages the agent to take actions that will be informative-
i.e., actions that are expected to reduce uncertainty about hidden states.

e The second term pushes the agent toward outcomes that are consistent with
prior preferences-i.e., desired or rewarding outcomes.

Together, these components drive both exploration and exploitation without re-
quiring an explicit reward signal.

2.4 Cognition as Dynamical Inference in State Space

Rather than making isolated decisions or computations, the brain operates as a dynamical
system-its activity is constantly changing and evolving over time [27]. At any moment, the
pattern of neural activity can be represented as a point in a high-dimensional space, where
each dimension corresponds to the activity of a different neuron or neural population. As
the brain processes information, this point traces out a path, or trajectory, through the



space. These trajectories reflect how the brain continuously updates its beliefs about
the hidden causes of sensory input. This ongoing process is driven by prediction errors-
differences between expected and actual input-and is influenced by the brain’s level of
uncertainty about its current beliefs [211 [5].

Such recurrent neural dynamics-whether oscillatory, chaotic, or metastable-can be
formalised as solutions to differential equations that govern the temporal evolution of
beliefs. In continuous time, this is captured by:

O o F1 5%~V F 7

The first term f(u, 3, x) describes how beliefs would evolve over time based on prior
expectations or natural dynamics-essentially, how the brain expects things to change even
without new sensory input. The second term acts as a corrective force, adjusting beliefs
to reduce prediction errors and improve the fit between the brain’s model and actual
sensory input [28].

Importantly, these neural dynamics are not mere computational artefacts-they have
clear biological substrates. Cortical microcircuits implement the message passing required
for hierarchical inference; thalamocortical loops regulate the gain and precision of these
messages through rhythmic synchronisation; and neuromodulatory systems (such as no-
radrenaline and dopamine) modulate uncertainty by adjusting the precision weighting of
prediction errors [29] [17].

This perspective challenges the classical view of cognition as computation in the tra-
ditional Turing sense-that is, as discrete, symbolic manipulation or pattern classification.
Instead, cognition emerges as a continuous, embodied, and context-sensitive process of
inference. The brain functions as a dynamical generative system, continuously inferring
both its own internal state and the state of the world by traversing a landscape of beliefs
shaped by free energy gradients.

2.5 From Neural Dynamics to General Intelligence

The implication is profound: general intelligence in biological agents does not arise from
learning specific input-output mappings or storing task-specific solutions. Instead, it
emerges from a capacity for continual, structured inference-dynamically estimating latent
causes, updating beliefs over time, and selecting actions to minimise future uncertainty
[30].

From this perspective, the brain’s solution to general intelligence is not a fixed algo-
rithm, but a dynamical system for approximate inference in deep, uncertain, and non-
stationary environments. Hierarchical generative models, precision-weighted prediction
errors, and temporally extended action selection together form a biologically grounded
architecture for flexible cognition [31].

Crucially, predictive coding and Active Inference provide more than a descriptive
theory of neural computation. They offer a mechanistic template for constructing artificial
systems that can reason, plan, and adapt in the same situated, embodied manner as
human agents. If general intelligence requires the ability to model hidden causes, update
beliefs online, and act to shape future outcomes, then these frameworks may serve as
blueprints for AGI.

In the next section, we examine how current Al systems fall short of these principles-
and what may be gained by shifting toward inference-based architectures inspired by the



brain.

3 Predictive Coding and the Limits of Deep Learning

The recent successes of deep learning-particularly convolutional neural networks (CNNs)
in vision [32] and large language models (LLMs) in language modelling [0, 11]-have driven
remarkable advances in artificial intelligence. These architectures excel at extracting
statistical regularities from large, static datasets, enabling superhuman performance on
benchmark tasks such as image classification, text completion, and game playing [33].

Despite these achievements, deep learning systems remain fundamentally constrained
in several respects. They generalise poorly beyond their training distribution [34], struggle
to represent uncertainty in a principled way [35], and lack the capacity for continual,
online adaptation [36]. Most notably, they are reactive rather than proactive: they do
not infer hidden causes, construct internal models of the environment, or select actions
based on long-term expectations [37].

In this section, we briefly review the core operating principles of CNNs and LLMs
and contrast them with those of predictive coding and Active Inference architectures
[5, [6]. Whereas conventional deep learning systems rely on static feedforward mappings
optimised via backpropagation, predictive coding systems perform ongoing, hierarchical
inference over latent causes, with uncertainty estimation and action selection embedded
in the same inferential loop.

Recent developments in deep learning-such as recurrent architectures, uncertainty-
aware models, and online fine-tuning-have begun to blur these boundaries. Nevertheless,
predictive coding and Active Inference provide a unified, biologically grounded framework
in which inference, learning, and behaviour emerge from a single underlying principle: the
minimisation of variational free energy.

This contrast highlights key missing ingredients in current Al systems-and motivates
a shift toward inference-based, neurobiologically inspired architectures with the potential
for more general, adaptive intelligence.

It should be noted that, despite their conceptual and computational differences, pre-
dictive coding and Active Inference architectures share some limitations with deep learn-
ing approaches-most notably, the reliance on fixed model structures and predefined state
spaces. Furthermore, although these inference-based models offer theoretical advantages
in uncertainty handling, continual adaptation, and the integration of perception and ac-
tion, they have yet to demonstrate consistent superiority over deep learning on large-scale,
real-world tasks. At present, their strengths are most evident in neuroscience settings
and constrained simulations rather than in mainstream AI benchmarks.

3.1 Convolutional Neural Networks: Feedforward Feature Ex-
tractors

Convolutional neural networks (CNNs) are designed to exploit the spatial regularities
of image data through a cascade of local filtering operations [32]. Each convolutional
layer applies a set of learned filters to its input, producing activation maps that represent
increasingly abstract features-ranging from edges and textures to object parts and global
shapes. These activations are typically followed by nonlinearities (e.g., ReLLU) and pooling



Table 1: Contrasting deep learning systems with predictive coding and Active Inference

architectures.

Aspect

Deep Learning (CNNs /
LLMs)

Predictive Coding / Ac-
tive Inference

Core Principle

Pattern recognition from
data

Inference over latent causes

Architecture

Feedforward, static layers

Hierarchical, recurrent, dy-
namic

Learning Mechanism

Gradient descent on loss

Minimisation of variational

functions (e.g. cross- | free energy
entropy)
Uncertainty Han- | Often implicit or approxi- | Explicit  via  precision-
dling mate (e.g. dropout) weighted errors and varia-
tional posteriors
Adaptivity Retraining or fine-tuning | Online inference over fixed

required

model structure; adapta-
tion without retraining

Action Selection

Typically via separate rein-
forcement learning module

Unified with perception via
expected free energy

World Model

Discriminative,
output mapping

input-to-

Generative, simulates
causes and consequences

Generalisation

Often brittle under distri-
bution shift

Potentially more robust via
structured inference and
uncertainty modelling

Biological Plausibil-
ity

Loosely inspired (e.g., con-
volutional hierarchy)

Explicitly mapped to corti-
cal microcircuits and neuro-
modulation

layers that introduce spatial invariance, culminating in a fully connected classification or
regression output layer.
Mathematically, the activity at layer [ is computed as:

B — O'(W(l) « B 4 b(l)) (8)

where * denotes convolution, W® and b® are trainable weights and biases, and o is
a pointwise nonlinearity.

While CNNs achieve strong performance on benchmark tasks such as object recogni-
tion and segmentation, they are fundamentally feedforward and static [38]. They do not
maintain internal beliefs about latent causes, nor do they revise those beliefs in light of
new observations. In contrast to predictive coding systems, CNNs lack recurrent dynam-
ics, uncertainty representation, or generative models capable of simulating sensory input
[39, 140].



As a result, standard feedforward CNNs are brittle under occlusion, adversarial noise,
or distributional shift |41} [34]. Their mappings are primarily discriminative-optimised to
assign labels to inputs rather than to infer their underlying causes. They typically lack
mechanisms for top-down feedback, hypothesis testing, or self-correction in the face of
sensory mismatch. In short, standard CNNs can classify what they have seen, but not
infer why they have seen it.

Recent research has begun to address these limitations by augmenting CNNs with
recurrent connections, generative components, or Bayesian uncertainty modeling (e.g.,
[39, 35, 42]). However, these architectures are not yet widely adopted in practice, in part
due to increased computational demands and limited gains over conventional models in
many applied settings [43].

3.2 Large Language Models: Amortised, Static Predictors

Large Language Models (LLMs) such as GPT and PaLM are built on the transformer
architecture, which models relationships between input tokens via ’self-attention’ [9].
During training, these models learn to predict the next token in a sequence-effectively
approximating the conditional distribution p(x; | x;) across large-scale datasets of natural
language.

The core of each transformer layer is a self-attention mechanism:

Vdy,

where queries @), keys K, and values V' are learned linear projections of token embed-
dings. These are processed through stacked layers of attention and feedforward transfor-
mations, producing rich contextual representations for each token.

Importantly, inference in LLMs is amortised: all model parameters are learned during
training and remain fixed at inference time. When generating text, LLMs sample from the
learned distribution without updating their internal parameters or explicitly representing
uncertainty or prediction errors [I3]. While they can incorporate contextual information
from preceding tokens within a prompt, they do not revise their underlying beliefs or
adapt in real time based on new observations.

Although transformers excel at capturing statistical patterns, syntax, and factual
knowledge from training data, they remain fundamentally static predictors. They lack
mechanisms for continual online adaptation, explicit uncertainty estimation, or model-
based reasoning about hidden causes [44]. Unlike biological systems, LLMs cannot ac-
tively test hypotheses or update their internal models to reduce uncertainty about their
environment. Their strength lies in mimicking linguistic structure and knowledge, rather
than in performing inference or goal-directed action.

KT
attention(Q, K, V') = softmax (Q ) 1% 9)

3.3 Deep Learning vs. Dynamical Inference

While deep learning models such as convolutional neural networks and large language
models have achieved impressive feats in pattern recognition and data generation, they
lack a foundational principle that characterises biological intelligence: dynamical infer-
ence. That is, the continual updating of internal beliefs over time in response to ongoing
sensory input and uncertainty.



Most deep networks rely on a large set of static parameters, optimised offline via gra-
dient descent. Once trained, these parameters remain fixed; inference involves applying a
learned mapping rather than updating latent beliefs in light of new observations [I], 45].
There is no mechanism for real-time hypothesis testing, belief revision, or uncertainty
minimisation.

While models such as LLMs, VAEs, GANs, and Diffusion Models are generative in the
statistical sense, they do not maintain causal generative models of the environment. They
typically do not infer hidden states that evolve over time or simulate the consequences
of possible actions. There is no formal encoding of prediction errors, no top-down mod-
ulation of beliefs, and no probabilistic inference over hidden causes grounded in sensory
feedback.

Furthermore, action selection-when included-is usually appended via external rein-
forcement learning modules. These operate separately from perception, lacking the tight
integration found in systems that select actions to reduce uncertainty or fulfil prior pref-
erences [46].

By contrast, biological systems continuously engage in closed-loop inference: they pre-
dict, perceive, and act in a recursive cycle aimed at reducing uncertainty and maintaining
homeostasis. Predictive coding and Active Inference offer a principled account of such
intelligence, where beliefs and actions emerge from a unified dynamical process. From
this perspective, conventional deep learning falls short-not due to lack of complexity, but
due to a lack of inference over time.

Deep Learning vs. Predictive Coding: A Summary of Missing Ingredients

e Learning: Deep networks have fixed parameters post-training; predictive
coding systems learn online via continual belief updates.

e Uncertainty: Deep learning lacks epistemic introspection; Active Inference
explicitly models and minimises uncertainty.

e Causality: CNNs and LLMs map inputs to outputs; the brain infers latent
causes via generative models.

e Feedback: Conventional deep models are feedforward; predictive coding em-
ploys hierarchical top-down feedback.

e Action: In deep learning, action is bolted on; in Active Inference, action
emerges from inference itself.

3.4 Advantages of Predictive Coding Architectures

Predictive coding architectures offer a number of advantages over conventional deep learn-
ing systems, particularly when applied to general intelligence in dynamic, uncertain en-

vironments [31], 4] [0]:

e Uncertainty-aware inference: Precision weighting allows the system to bal-
ance sensory evidence against prior expectations, enabling context-sensitive and
uncertainty-modulated decision-making [47].

e Sparse error signalling: Only mismatches between predictions and observations-
i.e., prediction errors-are propagated upward, reducing redundant signalling. While
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this supports efficient processing at the level of error transmission, generating top-
down predictions still requires sustained computational activity [21].

e Biological plausibility: Predictive coding aligns closely with known features of
cortical organisation, including hierarchical structure, laminar microcircuits, and
extensive feedback pathways [17].

e Unified perception—action loop: In Active Inference, perception and action
arise from the same inferential process-actions are selected to fulfil predictions,
completing a closed-loop system for autonomous, goal-directed behaviour [23].

Taken together, these properties position predictive coding not only as a leading
theory of brain function, but also as a biologically grounded design principle for building
artificial systems with human-like adaptability, efficiency, and autonomy.

In the next section, we explore how the Free Energy Principle and variational in-
ference formalise these insights into a unified computational engine for artificial general
intelligence.

4 The Free Energy Principle and Variational Laplace
as Inference Engines

The Free Energy Principle (FEP) provides a unifying theoretical framework for under-
standing perception, action, and learning in biological systems [0, [16, [6]. At its core,
the FEP posits that any adaptive agent-biological or artificial-must minimise a quantity
known as variational free energy in order to resist entropy-that is, the natural tendency
for physical systems to become disordered-and remain viable within its environment.

This free energy serves as a tractable upper bound on surprise (negative log model
evidence), which is otherwise intractable to compute directly [5]. Minimising free energy
ensures that the agent maintains a generative model of the world that remains consistent
with incoming sensory data. This minimisation occurs both through updating inter-
nal beliefs (perception) and through selecting actions that lead to more predictable and
preferred outcomes (action) [48].

4.1 Free Energy as a Unified Objective

Let x denote sensory input and z the latent states of the environment. In the Free Energy
framework, the brain (or agent) maintains a generative model of the form:

p(x,2z) = p(x|z)p(z) (10)
Inference proceeds by approximating the posterior p(z|x) with a variational distribu-
tion ¢(z), optimised by minimising the variational free energy:

Fla = KL[g(2)[p(2)] — Eq(z[log p(x|2)] (11)
This objective balances two terms:

e Accuracy: How well the model explains observed sensory data

e Complexity: The divergence between posterior and prior beliefs
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Importantly, this formulation closely resembles the Evidence Lower Bound (ELBO)
used in machine learning, both serving as tractable objectives for approximate Bayesian
inference [§] [49]. Rearranging terms gives:

log p(x) > Ey [log p(x|z)] — KL[q(2)|p(z)] = —Flq] (12)

Thus, minimising free energy is equivalent to maximising the evidence lower bound
(ELBO). Both provide a tractable bound on the marginal likelihood and guide approxi-
mate Bayesian inference. While machine learning typically uses the term ELBO, the Free
Energy Principle adopts the language of variational free energy to emphasise its roots
in thermodynamics and its application to biological systems as self-organising, entropy-
resisting agents. This equivalence reveals a deep formal connection between predictive
coding in neuroscience and variational inference in artificial intelligence [g].

4.2 Variational Laplace: A Scalable Engine for Dynamical In-
ference

While the Free Energy Principle defines the objective—minimising variational free energy—
an agent still requires a concrete algorithm to achieve this in practice. Standard opti-
misation methods like gradient descent can be slow or biologically implausible. A more
efficient and neurally inspired alternative is Variational Laplace, an inference scheme
that underpins neuroimaging tools such as Dynamic Causal Modelling (DCM) [50, [51].

Variational Laplace operates under a key simplifying assumption: that the approxi-
mate posterior distribution over hidden states is Gaussian. In this formulation, an agent’s
beliefs are represented by a mean vector y and a precision matrix X!, encoding both
what is believed and how certain those beliefs are:

q(z) = N(z; 1, )

The method efficiently updates these beliefs by approximating the local curvature
of the free energy landscape using a second-order Taylor expansion. This allows it to
compute both the direction and step size for updates—akin to the Newton—Raphson
method—enabling faster and more stable convergence than simple gradient descent.

In continuous time, this yields a gradient flow over beliefs:

d

7= VeFw)
This expresses a central insight of the Free Energy Principle: inference is not a static
computation, but a dynamical process unfolding over time. The agent continuously refines
its beliefs by traversing a trajectory through state space, driven by prediction errors and
modulated by uncertainty.

Variational Laplace provides a scalable and interpretable inference engine that natu-
rally supports this kind of online adaptation—making it well-suited for modelling biologi-
cal intelligence as well as building adaptive artificial agents. As we show in later sections,
this approach can be applied directly to active perception and control tasks, including
our toy Active Inference agent for Pong.
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4.3 Learning and Adaptation under the Free Energy Principle

While Section 2.3 outlined how action selection can be framed as inference through the
minimisation of expected free energy, the Free Energy Principle extends further-offering
a unified account of perception, action, and learning as complementary aspects of the
same optimisation process.

In this framework, perception corresponds to inferring the current state of the world,
action corresponds to selecting policies that minimise future expected surprise, and learn-
ing involves updating the parameters of the generative model to improve future predic-
tions [52, [7]. Over time, these model updates reduce long-term free energy by enabling
more accurate and efficient inference across changing environments.

This deep integration means that agents can adaptively tune both their beliefs and
their internal models in response to uncertainty and experience. Rather than relying on
task-specific reward signals or episodic retraining, the agent maintains a coherent inter-
nal model that evolves through ongoing experience-supporting continual, goal-directed
behaviour.

Taken together, the Free Energy Principle provides more than just a theory of brain
function: it offers a principled framework for building autonomous systems that perceive,
act, and learn in a dynamically structured world.

4.4 From Principle to Practice: Active Inference in 2D Pong

We implemented a minimal Active Inference agent to control a paddle in a 2D Pong
environment (Figure . At each time step, the agent receives a visual observation of
the current ball and paddle positions and uses Variational Laplace to infer the most
likely hidden states of the environment-such as the ball’s velocity-under a generative
model [50} 6]. This generative model was hand-specified and includes simplified physical
dynamics that govern how the ball and paddle evolve over time.

The agent evaluates a discrete set of candidate actions by simulating their conse-
quences under the generative model and computing the expected free energy of each
future trajectory. It then selects the action that minimises expected free energy and
updates the paddle’s position accordingly [7, [§].

Unlike reinforcement learning approaches, which typically learn policies from external
reward signals via trial-and-error, this agent uses a model-based, inference-driven strat-
egy. Its behaviour emerges from the minimisation of variational and expected free energy,
enabling online adaptation and uncertainty-aware decision making without task-specific
supervision or reward shaping.

The full perception—action loop is summarised by four core equations (Table , which
formalise observation, state inference, action selection, and state transition.

Table 2: Core equations governing the 2D Pong Active Inference loop.

Component Equation

Observation model y(t) = g(u(t)) + w

State inference (VL) p(t) ~ argmin, F (1) = 5lly(t) — g(1)||* + KL[q(1) [p(1)]
Action selection a(t) = arg min, E[G(7)]

ut +1) = f(u(t), at) + G

State transition model
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5 Toward a Neuro-Inspired AGI Architecture

The theoretical framework developed in this paper-centered on predictive coding, Active
Inference, and the minimisation of variational free energy-offers a guiding framework for
the development of artificial general intelligence (AGI). Rather than focusing solely on
behavioural benchmarks, this approach aims to replicate the underlying computational
principles of biological intelligence: inference-driven, uncertainty-sensitive, and dynami-
cally adaptive [5, 8, 53].

However, important gaps remain. Most notably, while the framework assumes access
to a generative model, it does not yet provide a general solution for autonomously discov-
ering latent states, learning model structure, or generating suitable priors for new tasks.
These are major open challenges for scaling Active Inference to realistic AGI applications.

Thus, while the architecture outlined here is conceptually unified and biologically
grounded, it remains aspirational. Turning these principles into engineering tools that
can support scalable, general-purpose intelligence will require substantial further research-
particularly in the domains of structure learning, planning, and continual adaptation.

5.1 Key Design Principles

A neuro-inspired AGI system would be governed by the following key principles, imple-
mented as an iterative loop of inference, action, and learning;:

e Generative models: Maintain internal probabilistic models p(x, z) that gener-
ate sensory inputs z from latent states z, supporting simulation, counterfactual
reasoning, and belief updates [3].

e Hierarchical structure: Organise internal representations into layers, where high-
level beliefs generate top-down predictions and low-level sensory data propagate
bottom-up prediction errors [4].

e Online variational inference: Use real-time algorithms such as Variational Laplace
to continuously update beliefs p(t) about hidden causes, in response to new sensory
data [50, ©].

e Precision weighting: Dynamically estimate and apply precision (inverse variance)
to modulate the influence of prediction errors, enabling adaptive attention, robust
inference, and uncertainty-aware behaviour [24].

e Active inference loop: Select actions a(t) that minimise expected free energy
G(m), unifying exploration (epistemic value) and goal pursuit (instrumental value)
in a principled way [7]. However, planning via expected free energy minimisation
remains computationally demanding, and developing scalable approximations is an
open area of research.

e Continual learning and plasticity: Adapt the parameters 6 of the generative
model over time to minimise long-term free energy. Unlike belief updating, this
form of structural learning is non-trivial and remains an active research frontier
[54].
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Pong observation at time t;
y(t) € R"

A 4

Variational Laplace to infer hidden state u(t);

1
u(t) ~ argmin F(u) = 5 |y(&) — gw)|* + KL[q(w)|p(w)]

\ 4

4 Select action based on current belief u(t);

~

a(t) = argmin G ()
a
where m = policy and G(n) = Expected free energy

-

\ 4

Roll out predicted next state under action a(t);

y(t+1) = f(u(t),a(®))

\ 4

Move paddle accordingly (in real world)
paddle,(t + 1) = clip(paddle, (t) + Aa(t))

Figure 1: This schematic illustrates the core steps of an Active Inference loop applied to
a simple Pong environment. At each time step t, the agent observes the sensory input
y(t), which includes ball and paddle positions. Using a generative model g(u), the agent
performs Bayesian state estimation via Variational Laplace, updating its belief p(t) about
hidden environmental variables (e.g., ball velocity). Based on this belief, it evaluates
multiple candidate policies m and selects the action a(t) that minimises expected free
energy G(m), balancing uncertainty reduction and goal satisfaction. The chosen action
is used to roll forward predictions, update the paddle position, and interact with the
environment. This generates a new observation y(t + 1), closing the perception—action
loop. This process allows the agent to infer, plan, and act continuously in a dynamic,
uncertain setting.
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While these components provide a compelling blueprint for adaptive intelligence, many of
them-especially those involving structural learning and long-horizon planning-face serious
scalability challenges in complex environments. Addressing these limitations is central to
the research roadmap we outline in the supplementary materials.

5.2 Architecture Sketch

The pseudocode below captures the operational logic of a neuro-inspired AGI system
based on predictive coding and Active Inference. At its core, the architecture is an
iterative loop that continuously refines beliefs, selects actions, and updates its generative
model through the minimisation of variational and expected free energy [55].

The system begins by maintaining internal beliefs ;2 about hidden causes in the en-
vironment, and a generative model p(x, z;0) parameterised by 6. At each time step, it
receives new sensory input y;, updates its beliefs via Variational Laplace inference, and
uses precision estimates Y; to modulate the influence of prediction errors. It then simu-
lates a set of candidate actions (or policies ) and evaluates their expected free energy
G(m). The optimal action is selected and executed, and model parameters 6 are up-
dated to improve future inference and prediction. If a hierarchical structure is present,
prediction errors are propagated across layers to coordinate updates across abstraction
levels.

This architecture implements perception, action, and learning as deeply intertwined
processes-each grounded in a single unifying principle: the minimisation of variational
free energy.
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Pseudocode: Active Inference Loop for Neuro-Inspired AGI

Initialize:

0 < generative model parameters

1 < initial belief over hidden states

Y. < initial precision (inverse covariance)

Loop over time t =1,2,...:

1. Observe sensory input:
Y; <— sensory observation from environment

2. Infer hidden states via Variational Laplace:
p A~ argmin, F ()
F () = 3llye — g(w)lI* + KL[q() [ p(1)]

3. Update precision:
>t + function of current residual and belief uncertainty

4. Evaluate actions via expected free energy:
G(m) = Eqllog q(2|m) — log p(z[x, 7)]

5. Select and execute action:
a; = argmin, E[G()]
Execute a; in environment

6. Update generative model parameters:
0« 0 —nVyeF(0)

7. Propagate hierarchical updates (if applicable):
Update higher and lower levels via prediction errors

Note: This pseudocode is intended as a conceptual sketch rather than a directly imple-
mentable algorithm. Several steps-such as evaluating the expected free energy over all
possible future trajectories, or performing stable online updates to the generative model’s
parameters-pose significant computational and theoretical challenges. In practice, these
operations would require substantial approximations, heuristics, or architectural con-
straints to become tractable. Nevertheless, this schematic illustrates the integrated nature
of perception, inference, learning, and action in Active Inference frameworks, grounded
in the minimisation of variational free energy.

5.3 Comparison with Existing AI Systems

The neuro-inspired AGI architecture outlined here diverges fundamentally from current
deep learning approaches. Conventional Al models-such as convolutional neural networks
and large language models-learn static mappings from inputs to outputs using large offline
datasets. While effective in narrow domains, these systems typically lack mechanisms for
online adaptation, uncertainty representation, and causal reasoning.

By contrast, the architecture proposed here functions as an inference-driven agent:
it maintains a generative model of the environment, continuously updates beliefs via
variational inference, and selects actions that minimise expected free energy. This enables
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flexible, context-sensitive behaviour and robust generalisation to novel or nonstationary
environments.

This paradigm aligns with a growing class of inference-based Al systems. Notably,
Ha and Schmidhuber’s World Models framework [56] demonstrated that agents equipped
with internal generative models can learn compact representations and plan actions in
latent space. Similarly, DeepMind’s work on Active Inference agents [57, [55] has shown
that variational free energy can be used as a unifying objective for perception, action,
and learning in deep neural architectures.

However, most of these systems retain amortised or offline components and stop short
of full hierarchical, online variational inference. The architecture presented here em-
phasises biologically plausible, dynamic updates across multiple levels of abstraction-
mirroring the continual inference processes of the brain.

In short, whereas conventional Al systems imitate intelligent behaviour by replaying
learned responses, a neuro-inspired AGI aims to compute intelligence through continual
inference, adaptation, and goal-directed interaction with the world.

6 Conclusion

Theoretical neuroscience provides not just a metaphorical lens, but a computational
blueprint for general intelligence. By casting perception, action, and learning as pro-
cesses of variational inference, the frameworks of predictive coding and the Free Energy
Principle (FEP) offer implementable strategies that unify information processing across
cognitive domains [5, [58].

Unlike traditional AI approaches that rely on static architectures trained on fixed
datasets, neuro-inspired systems grounded in Active Inference dynamically infer causes,
forecast consequences, and adaptively select actions to minimise uncertainty and achieve
goals [59, [60]. These agents are not simply reactive; they are generative, predictive, and
epistemically driven.

The vision presented here is one of convergence: bridging the gap between modelling
the mind and building machines that think. By integrating insights from cortical compu-
tation, hierarchical generative models, and variational optimisation, we can move toward
artificial systems that share the hallmarks of biological intelligence-flexibility, resilience,
and adaptability in uncertain environments.

Ultimately, the path to artificial general intelligence may lie not in mimicking outputs
of intelligent behaviour, but in replicating the inferential machinery that underwrites it.
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